Subspace Methods for Computing the Pseudospectral Abscissa and the Stability Radius

نویسندگان

  • Daniel Kressner
  • Bart Vandereycken
چکیده

The pseudospectral abscissa and the stability radius are well-established tools for quantifying the stability of a matrix under unstructured perturbations. Based on first-order eigenvalue expansions, Guglielmi and Overton [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166-1192] recently proposed a linearly converging iterative method for computing the pseudospectral abscissa. In this paper, we propose to combine this method and its variants with subspace acceleration. Each extraction step computes the pseudospectral abscissa of a small rectangular matrix pencil, which is comparably cheap and guarantees monotonicity. We observe local quadratic and prove local superlinear convergence of the resulting subspace methods. Moreover, these methods extend naturally to computing the stability radius. A number of numerical experiments demonstrate the robustness and efficiency of the subspace methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Algorithms for Computing the Real Structured Pseudospectral Abscissa and the Real Stability Radius of Large and Sparse Matrices

We present two new algorithms for investigating the stability of large and sparse matrices subject to real perturbations. The first algorithm computes the real structured pseudospectral abscissa and is based on the algorithm for computing the pseudospectral abscissa proposed by Guglielmi and Overton [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166-1192]. It entails finding the rightmost eigenva...

متن کامل

Criss-Cross Type Algorithms for Computing the Real Pseudospectral Abscissa

The real ε-pseudospectrum of a real matrix A consists of the eigenvalues of all real matrices that are ε-close in spectral norm to A. The real pseudospectral abscissa, which is the largest real part of these eigenvalues for a prescribed value ε, measures the structured robust stability of A w.r.t. real perturbations. In this report, we introduce a criss-cross type algorithm to compute the real ...

متن کامل

Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix

The ε-pseudospectral abscissa and radius of an n × n matrix are respectively the maximal real part and the maximal modulus of points in its ε-pseudospectrum, defined using the spectral norm. Existing techniques compute these quantities accurately but the cost is multiple singular value decompositions and eigenvalue decompositions of order n, making them impractical when n is large. We present n...

متن کامل

Robust stability and a criss-cross algorithm for pseudospectra

A dynamical system ẋ = Ax is robustly stable when all eigenvalues of complex matrices within a given distance of the square matrix A lie in the left half-plane. The ‘pseudospectral abscissa’, which is the largest real part of such an eigenvalue, measures the robust stability of A. We present an algorithm for computing the pseudospectral abscissa, prove global and local quadratic convergence, an...

متن کامل

Approximating the Real Structured Stability Radius with Frobenius-Norm Bounded Perturbations

We propose a fast method to approximate the real stability radius of a linear dynamical system with output feedback, where the perturbations are restricted to be real valued and bounded with respect to the Frobenius norm. Our work builds on a number of scalable algorithms that have been proposed in recent years, ranging from methods that approximate the complex or real pseudospectral abscissa a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2014